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critical concentration ; 
chemical potential ; 
mass flow ; 
phenomenological coefficients of “dif- 
fusion”. 

1. The diffusion coefficient in a binary mixture 
defined as the proportionality factor between a 
mass flow and concentration gradient is, as is 
known, directly proportional to the derivative 
(a,@~),, T which vanishes at a critical point [ 11. 

In its turn, the numerous experiments [2] have 
established that the concentration gradients in 
binary mixtures at the critical state do not lead to 
mass transfer for a long period of time. Some- 
times this is named as the disappearance of 
diffusion at the critical point. 

Note that according to the definition of a 
critical point the second derivative (~z@?),, T 
also vanishes there, hence, in the vicinity of the 
critical point the diffusion coefficient depends up- 
on concentration as : 

D - (c - c*)' 

where c* is the critical concentration. 
2. From the phenomenological viewpoint the 

equality of the diffusion coefficient to zero at the 
critical point means that the ordinary expression 
for a flow (the Fick law) 

7= -DVc (1) 

in the vicinity of the critical point appears to be 

insufficient. In order to obtain a correct relation 
between the flow and the concentration distri- 
bution it is natural to take into consideration 
the following (after [l]) terms in flow expansion 
in a power series of the relative change of con- 
centration for some characteristic molecular 
length?. Under ordinary conditions these terms 
are negligibly small. However, at a critical point 
where the “ordinary” diffusion flow disappears, 
the whole mass transfer will be defined by these 
terms. In the approximation following, the mass 
flow may be represented as the sum 

J= -DVc + D,V(Ac) + D,V(Vc)’ 

+ D,(VC)~VC, (2) 

where Di are some coefficients which at the 
critical point differ from zero and D = D,(c 
- c*)~ if the concentration is sufficiently close 
to the critical one. 

The relative values of the terms in equation 
(2) may be estimated only from dimensional 
considerations in the phenomenological theory. 
Such an estimate is not difficult and leads to the 
conclusion that in any case the fourth term in 
(2) is much smaller than the first, and the third is 
much smaller than the second (of course, here 
we are talking about a macroscopic problem so 
that the characteristic dimension of a substance 
distribution, L, is much greater than the molecu- 
lar length, I). Indeed, for the four summands 

t In gases the mean free path is a characteristic length. In 
the case under consideration the correlation length may serve 
as the characteristic molecular length. 
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entering the right-hand side of (2) there are 
appropriate estimates 

A % i3& U 0 
(3) 

2c*L ' 

where 6c are the characteristic changes (drop) 
in concentration; u is the characteristic molecu- 
lar velocity, and Ai are dimensionless coef- 
ficients. Within the framework of the 
phenomenological theory it is natural to assume 
that the latter coefficients are of the same order 
of magnitude. Since the concentrations under 
consideration are close to the critical ones, 
&z/c* 4 1, and besides l/L 4 1, it immediately 
follows from the estimates of (3) that 

and 

as already stated above 
Taking into account the latter estimates and 

using the continuity equation for c, we come to 
the following diffusion equation valid in the 
vicinity of the critical point : 

ac 
t = diu(D,c2Vc - D,V(Ac)}, (5) 

where for convenience concentration is recorded 
from the critical one. The diffusion equation at 
D, = 0 was considered for the first time in [3]. 
Of course this equation is valid only exactly at 
the critical point. 

We note that nevertheless, in some works the 
diffusion equation was studied which did not 
contain the term with D, which is basic at a 
critical point has been however investigated (see, 
for example [4]). 

Mark that proceeding from the condition of 
the entropy increase it follows that in the vicinity 
of a critical point the coefficient II, > 0. In 
addition, as it will be shown later, the latter in- 
equality is a necessary condition for the exist- 
ence of the steady-state solutions of the diffu- 
sion equation (5). 

3. Consider the simplest boundary problems 
of equation (5). First of all, let us examine the 
steady-state problems. Many steady-state boun- 
dary-value problems which are interesting from 
the physics point of view have trivial solutions 
of the form c = const. 

One of the problems with a non-trivial steady- 
state distribution of concentration is the boun- 
dary-value problem for a semi-infinite region 
(06x< KI) 

(6) 

c(0) = co. (7) 

At x = + x it is assumed that c(x) and the 
necessary number of its derivatives vanish. 

The solution of this boundary-value problem 
is, as it can easily be checked 

here 

c(x) = 
c 
O 

1 + x/x,’ 
(8) 

x0 = [co J($$ (9) 

The condition for the solution is Do/D, > 0 
and since always Do > 0, then it follows that 
also D, > 0 as has been mentioned at the end 
of the previous chapter. 

From the properties of the solution (8) we 
only note that 

$44 dx 

diverges. This means that an infinite amount of 
substance must be introduced into the region 
under consideration before steady state is 
established. 
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4. Let us study the solution of equation (5) in be arbitrarily close to that of the linear equation 
the simplest c+ of an infinite one-dimensional 
region. 

f”’ - u= 0. (15) 

The equation has the form Under the condition (14) the solution of the 

ac 
-=Do& c$ -Dig. 

latter equation is given by the integral 

at ( > 
(10) 

From the point of view of physics, of interest 
f(5) = f Q i exp [ -(z4/4)] * cos (5~) dz. (16) 

will be the even solutions, with respect to x, 
The function fyt) oscillates assuming positive 

which decrease sufficiently for x + + co, so that and negative values since according to the 

the following integral exists Laguerre theorem [S] the entire function (16) 
has an infinite number of real zeros (and no 

_t c(x, t) dx = 4 = const. (II) 
complex ones). The asymptotic behaviour of the 
functionf(5) defined according to equation (16) 

As readily seen, problem (lo)+ 1) possesses a 
may be obtained by the method of steepest 

similarity property. Its solution may be sought 
descent. The steepest descents of the integral of 

in the form: (16) are located at points 

J3 + i 

> (12) 
Zl = -j--P’ 

~=A- 
z3 = -it+. 

(fD1 t).&’ (See Fig. 1.) It is possible to show that the asymp- 

where the function off (0 satisfies the differen- 
totic behaviour of the integral (16) is defined only 

tial equation of the third order (one integration 
is performed simply) : 0 I 

f”’ - f’f’ - gf= 0. (13) 
,I----.. 

Condition (5) assumes the form : 

$f(C)d5 = Q, (14) 

where 

The law of motion for the points of equal FIG. 1. Position of points of steepest descent (16). 

concentration x - 9 is the essential consequence 
resulting from the similar solution of equation by the sum of the contributions of the points 

(12); thus diffusion at a critical point occurs z1 and z2 which lie in the upper half plane. The 

slower than ordinary diffusion (x - t*). This path of the integration in the vicinity of these 

is also valid for the case of a larger number points is determined by the equalities 

measurements. 
5. Let us investigate some properties of the 

solution of equation (13). For small values of the 
Im(itz--$=Im(i<z,-$)(k= 1,2), 

parameter Q the solution of equation (13) will respectively. Consequently, the asymptotic be- 

4N 
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haviour of the function predetermined by the 1 and 2): the region of small 5 with a distribu- 
integral (16) will be of the form tion of the type of a thermal wave (18) and that 

f(r) = 2 
JC ) 

f Qev[-i541 
of large l where the solution has the form of 
damped oscillations (16). 

Note that since f(t) -+ 0 at 5 + cc the solu- 
tion of (16) and (17) will also be valid for any Q 
if only the values of l are sufficiently great. 

This case physically corresponds to the trans- 
fer process with concentrations which are very 
close to the critical ones when “ordinary” 
diffusion is unessential due to the small dif- 
fusion coefficient. 

On the other hand, for sufficiently great values 
of Q there always exists such a region of the 
values of 5 when ordinary diffusion is the basic 
mechanism of transfer. It is not difficult to show 
that in this region the derivativef”’ in equation 
(13) is negligibly small, and the solution has the 
form of the known thermal waves of Zeldo- 
vich-Kompanieets [6, 71: 

1 J(ti - 5’) for 5 < to, 
f(t) = 0 for 5 > I&, (18) 

It goes without saying that the solution of (18) 
is not true for 5 close to (or greater than) &,, 
since with a decrease of the function f(l) the 
relative role of the third derivative in (13) in- 
creases, and the solution assumes the form of(16). 

The regions where the solutions of (16) and 
(18) are valid are joined by a transition region in 
which 

5 Iv 50 - JQ. (19) 

t f(5) 5 f(5) l f‘(5) 

0 0.7893 2.2 0.0680 
0.2 @7796 2.4 0.0137 
0.4 0.7489 2.6 - 0.0278 
0.6 0.7002 2.8 - 0.0565 
0.8 0.6357 3.0 - 0.0735 
1.0 0.5589 3.2 - 0.0803 
1.2 0.4738 3.4 - 0.0788 
1.4 0.3846 3.6 A.0712 
1.6 0.2957 3.8 - 0.0596 
1.8 0.2112 4.0 - 0.0460 
2.0 0.1344 4.2 -0.0321 

4.4 -0.0193 
4.6 - OGO83 
4.8 oQOO3 
5.0 0.0062 
5.2 0.0097 
5.4 0.0112 
5.6 0.0109 
5.8 om95 
6.0 0.0075 

Table 2. Q = 50.4 

0 80000 3.6 7.1442 7.2 3.4588 
0.2 7.9975 3.8 7.0398 7.4 3.0081 
0.4 7.9899 4.0 6.9281 7.6 2.493 1 
0.6 7.9775 4.2 6.8087 7.8 I.9161 
0.8 7.9599 4.4 6.6812 8.0 1.3044 
1.0 7.9372 4.6 6.5450 8.2 0.7236 
I.2 7.9095 4.8 6.3997 8.373 0 
1.4 7.8765 5.0 6.2446 8.4 - 0.0480 
1.6 7.8384 5.2 6.0789 8.6 - 0.2326 
1.8 7.7949 5.4 5.9017 8.8 -0.2759 
2.0 7.7459 5.6 5.7120 9.0 -0.2129 
2.2 7.6916 5.8 5.5084 9.2 -0.1287 
2.4 7.6315 6.0 5.2892 9.4 - 0.0576 
2.6 7.5657 6.2 5.0522 9.6 -0.0121 
2.8 7.4940 6.4 4.7947 9.6797 0 
3.0 7.4162 6.6 4.5128 9.8 0.0112 

3.2 7.3321 6.8 4.2013 
3.4 7.2415 7.0 3.8530 

Actually the whole diffusing substance is con- 6. The above phenomenological approach to 
centrated in the region where LJ < &,. mass-transfer phenomena near the critical point 

The results of the numerical solution of the and the derived equation (3) make it possible 
complete equation (13) for Q = 1 and 50.4 are to consider particular boundary-value problems, 
given in Tables 1 and 2, respectively. corresponding to various experimental condi- 

Thus, for the concentration distribution we tions. However, let us emphasise that the simple 
have two quite distinct regions (see Fig. 2 curves boundary-value problems considered here allow 
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FIG. 2. Curve 1: numerical solution of equation (13) for Q = 1. 
Curve 2: numerical solution of equation (13) for Q = 50.4, 

solid curve; solution of type “thermal wave” (18), dashed line. 

a very clear explanation of the main peculiari- 
ties of mass-transfer phenomena.in the critical 4. 
region. c 

J. 
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Abstract-The phenomenological theory is proposed of mass transfer in binary systems near the critical 
point. 

R&sum&On propose une thCorie ph&nomtnologique du transport de masse dans des syst&mes binaires 
au voisinage du point critique. 

Zusamwnhssrmg--Fiir den Stofftransport in bin&en Systemen nahe dem kritischen Punkt wird eine 
ph%nomenologische Theorie vorgeschlagen. 


