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NOMENCLATURE

¢, concentration;

¢*, critical concentration;

u, chemical potential;

j, mass flow;

D, phenomenological coefficients of “dif-
fusion™.

1. The diffusion coefficient in a binary mixture
defined as the proportionality factor between a
mass flow and concentration gradient is, as is
known, directly proportional to the derivative
(0u/0c),, r which vanishes at a critical point [1].

In its turn, the numerous experiments [2] have
established that the concentration gradients in
binary mixtures at the critical state do not lead to
mass transfer for a long period of time. Some-
times this is named as the disappearance of
diffusion at the critical point.

Note that according to the definition of a
critical point the second derivative (62u/0c?),, r
also vanishes there, hence, in the vicinity of the
critical point the diffusion coefficient depends up-
on concentration as:

D~ (c — c*)?

where c* is the critical concentration.

2. From the phenomenological viewpoint the
equality of the diffusion coefficient to zero at the
critical point means that the ordinary expression
for a flow (the Fick law)

j= -DvVc (1)

in the vicinity of the critical point appears to be

insufficient. In order to obtain a correct relation
between the flow and the concentration distri-
bution it is natural to take into consideration
the following (after [1]) terms in flow expansion
in a power series of the relative change of con-
centration for some characteristic molecular
lengtht. Under ordinary conditions these terms
are negligibly small. However, at a critical point
where the “ordinary” diffusion flow disappears,
the whole mass transfer will be defined by these
terms. In the approximation following, the mass
flow may be represented as the sum

—DVe + D,V(Ac) + D,V(Ve)?
+ D3(Ve)*Ve, (2)

where D; are some coefficients which at the
critical point differ from zero and D = Dy(c
— ¢*)? if the concentration is sufficiently close
to the critical one.

The relative values of the terms in equation
(2) may be estimated only from dimensional
considerations in the phenomenological theory.
Such an estimate is not difficult and leads to the
conclusion that in any case the fourth term in
(2) is much smaller than the first, and the third is
much smaller than the second (of course, here
we are talking about a macroscopic problem so
that the characteristic dimension of a substance
distribution, L, is much greater than the molecu-
lar length, ). Indeed, for the four summands

j=

1 In gases the mean free path is a characteristic length. In
the case under consideration the correlation length may serve
as the characteristic molecular length.
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entering the right-hand side of (2) there are
appropriate estimates
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where dc are the characteristic changes (drop)
in concentration; v is the characteristic molecu-
lar velocity, and A; are dimensionless coef-
ficients. Within the framework of the
phenomenological theory it is natural to assume
that the latter coefficients are of the same order
of magnitude. Since the concentrations under
consideration are close to the critical ones,
dc/c* < 1, and besides I/L < 1, it immediately
follows from the estimates of (3) that

liol > i3]

and 4)

sl > .
as already stated above

Taking into account the latter estimates and
using the continuity equation for ¢, we come to
the following diffusion equation valid in the
vicinity of the critical point :

de . 2
Fri div{Dyc*Vc — D,V(Ac)}, (5)
where for convenience concentration is recorded
from the critical one. The diffusion equation at
D¢ = 0 was considered for the first time in [3].
Of course this equation is valid only exactly at
the critical point.

We note that nevertheless, in some works the
diffusion equation was studied which did not
contain the term with D; which is basic at a
critical point has been however investigated (see,
for example [4]).
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Mark that proceeding from the condition of
the entropy increase it follows that in the vicinity
of a critical point the coefficient D, > 0. In
addition, as it will be shown later, the latter in-
equality is a necessary condition for the exist-
ence of the steady-state solutions of the diffu-
sion equation (5).

3. Consider the simplest boundary problems
of equation (5). First of all, let us examine the
steady-state problems. Many steady-state boun-
dary-value problems which are interesting from
the physics point of view have trivial solutions
of the form ¢ = const.

One of the problems with a non-trivial steady-
state distribution of concentration is the boun-
dary-value problem for a semi-infinite region

(0 € x < )
4
de Do d (c29—c~) =0, (6)
dx

dx* D, dx
c0) = co. (7)

At x = — oc it is assumed that c¢(x) and the
necessary number of its derivatives vanish.

The solution of this boundary-value problem
is, as it can easily be checked

Co
1+ x/xq

el

The condition for the solution is Dy/D; > 0
and since always D, > 0, then it follows that
also D, > 0 as has been mentioned at the end
of the previous chapter.

From the properties of the solution (8) we
only note that

ox) =

(8)

here

0

[ e(x)dx

0
diverges. This means that an infinite amount of
substance must be introduced into the region
under consideration before steady state is
established.
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4. Let us study the solution of equation (5) in
the simplest case of an infinite one-dimensional
region.

The equation has the form

doc 0 oc d*c
—=Dy—|*—=)-D, —

ot 0 ox (c 6x> ! ox*

From the point of view of physics, of interest
will be the even solutions, with respect to x,

which decrease sufficiently for x — + o0, so that
the following integral exists

(10)

o8]

| cx,f)dx = q = const.

— &

(11)

As readily seen, problem (10)~(11) possesses a
similarity property. Its solution may be sought

in the form:
- (2 }.f 12
= (x) 0. a2
X
¢ = @p,o¢

where the function of f(£) satisfies the differen-
tial equation of the third order (one integration
is performed simply):

"= =&=0. (13)
Condition (5) assumes the form:
[roa=o. (14)

where

-1 )

The law of motion for the points of equal
concentration x ~ t*istheessential consequence
resulting from the similar solution of equation
(12); thus diffusion at a critical point occurs
slower than ordinary diffusion (x ~ ¢*). This
is also valid for the case of a larger number
measurements.

5. Let us investigate some properties of the
solution of equation (13). For small values of the
parameter Q the solution of equation (13) will

4N
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be arbitrarily close to that of the linear equation

fr-g=0 (15)

Under the condition (14) the solution of the
latter equation is given by the integral

[ = %Q }Oexp [—(z*/4)] - cos (¢2) dz. (16)
0

The function f(€) oscillates assuming positive
and negative values since according to the
Laguerre theorem [5] the entire function (16)
has an infinite number of real zeros (and no
complex ones). The asymptotic behaviour of the
function f(£) defined according to equation (16)
may be obtained by the method of steepest
descent. The steepest descents of the integral of
(16) are located at points

\/3+i&’

J3-i
5 —5—8,

Zy = 2

23 = —ié*.

Zl=

(See Fig. 1.) It is possible to show that the asymp-
totic behaviour of the integral (16) is defined only

Fi1G. 1. Position of points of steepest descent (16).

by the sum of the contributions of the points
z; and z, which lie in the upper half plane. The
path of the integration in the vicinity of these
points is determined by the equalities

Im (ifz - %) = Im (ifzk - ij)(k = 1, 2),

respectively. Consequently, the asymptotic be-
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haviour of the function predetermined by the
integral (16) will be of the form

fo=2 [(2)eewi-ie

cos {[3(,/3)/8] &* — (n/6)}
. éi

Note that since f(&) - 0 at & —» oo the solu-
tion of (16) and (17) will also be valid for any Q
if only the values of ¢ are sufficiently great.

This case physically corresponds to the trans-
fer process with concentrations which are very
close to the critical ones when ‘“ordinary”
diffusion is unessential due to the small dif-
fusion coefficient.

On the other hand, for sufficiently great values
of Q there always exists such a region of the
values of £ when ordinary diffusion is the basic
mechanism of transfer. It is not difficult to show
that in this region the derivative f'” in equation
(13) is negligibly small, and the solution has the
form of the known thermal waves of Zeldo-
vich-Kompanieets [6, 7]:

(17)

V& - &
fO=1,

for & < &,

for & > &, (13)

It goes without saying that the solution of (18)
is not true for £ close to (or greater than) &,,
since with a decrease of the function f(&) the
relative role of the third derivative in (13) in-
creases, and the solution assumes the form of (16).

The regions where the solutions of (16) and
(18) are valid are joined by a transition region in
which

£~ & ~JO (19)
Actually the whole diffusing substance is con-
centrated in the region where £ < &,.

The results of the numerical solution of the
complete equation (13) for Q = 1 and 504 are
given in Tables 1 and 2, respectively.

Thus, for the concentration distribution we
have two quite distinct regions (see Fig. 2 curves
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1 and 2): the region of small ¢ with a distribu-
tion of the type of a thermal wave (18) and that
of large £ where the solution has the form of
damped oscillations (16).

Table 1. Q =1
¢ f1©) ¢ f©) 4 f©©)
0 0-7893 2:2 0-0680 44  —00193
02 07796 24 00137 46  —0-0083
04 07489 26 —00278 48 0-0003
06 07002 28 —0-0565 50 0-0062
08 06357 30 00735 52 0-0097
10 0-5589 32 —00803 54 00112
1-2 04738 34 00788 56 0-0109
1-4 03846 36 —00712 58 0-0095
16 02957 38 —00596 60 0-0075
-8 02112 40  —0-0460
220 01344 42  —-00321
Table 2. Q = 504
¢ f©) ¢ f& ¢ f)
0 8-0000 36 71442 72 3-4588
02 79975 38 70398 74 3-0081
04 79899 40 69281 7-6 2-4931
06 79775 42 68087 7-8 1-9161
08 79599 44 66812 80 1-:3044
1-0 79372 46 65450 82 07236
112 79095 48 63997 8373 0
1-4 78765 50 62446 84 --0-0480
1-6 7-8384 52 60789 86 —-02326
1-8  7-7949 54 59017 88 —0-2759
20 77459 56 57120 9-0 —-0-2129
22 76916 58 55084 92 -0-1287
24 76315 60 52892 94 —-0-0576
26 75657 62 50522 9-6 —-00121
2-8 74940 64 47947 9-6797 0
30 74162 66 45128 9-8 0-0112
32 73321 68 42013
34 72415 70 38530

6. The above phenomenological approach to
mass-transfer phenomena near the critical point
and the derived equation (3) make it possible
to consider particular boundary-value problems,
corresponding to various experimental condi-
tions. However, let us emphasise that the simple
boundary-value problems considered here allow
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F1G. 2. Curve 1: numerical solution of equation (13) for ¢ = 1.
Curve 2: numerical solution of equation (13) for Q = 504,
solid curve; solution of type “thermal wave” (18), dashed line.
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Abstract—The phenomenological theory is proposed of mass transfer in binary systems near the critical
point.

Résumé—On propose une théorie phénoménologique du transport de masse dans des systémes binaires
au voisinage du point critique.

Zusammenfassung—Fiir den Stofftransport in biniren Systemen nahe dem kritischen Punkt wird eine
phinomenologische Theorie vorgeschlagen.



